If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x+18=0
a = 2; b = -16; c = +18;
Δ = b2-4ac
Δ = -162-4·2·18
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{7}}{2*2}=\frac{16-4\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{7}}{2*2}=\frac{16+4\sqrt{7}}{4} $
| 27x=1/3x+13 | | 10=2x=16 | | 4.6+z=24.8 | | 2/7(14q+7/2)-3=9 | | 2x-4(2-3x)=5(x-3)-47 | | 3w+21-5w=27 | | 3x*9=15 | | q-2.3=4.5 | | -8(n+10)=-64 | | 6x=2.5x+8+1.5x | | q-2.6=4.5 | | 3x*3=15 | | -21=2+8(d+3) | | 1/2(n-14)=-10 | | 0=3q^2-16q+30 | | q=3q^2-16q+30 | | --4(-6x+2)=-128 | | 5x+2x=4+18 | | 4(x-1)=4x-7 | | 3x+17+x=33+2x | | 12x-2x-10=12-7+7x | | 9(-7n-6)n=7 | | -16x^2+45x-8.8=0 | | 5x+2-8=39 | | 11y-5=6y-10 | | 5c-5=-80 | | 8d+3=283 | | -16x^2+45x+6.2=0 | | 3c+3=-135 | | q-16=145 | | n+.2n=1800 | | -16=-×x= |